BDMC Winter Webinar

Ming-Yen Kao, UC Berkeley Mar. 19, 2020

Part I Scaling of NC-FinFETs

Motivation

 Study the scalability of FinFETs within IRDS Device Constrains

Step 1: Build the Device using TCAD

Process Step	Define Fin (tapered and rounded)	STI+SiO2	Poly Gate	Spacer	Source/ Drain Epitaxy	Gate Removal	НКМС	BEOL

Node Labeling (nm)	"5"
Year of Production	2020
Gate Length (nm) -HP	18
VDD (V)	0.70
Cch (fF/um) - HP	0.45
lon (uA/um) at loff=10 (nA/um)	0.85

Step

Step 2: Calibrate TCAD Mobility and Series Resistance to match Intel Lg=18nm[1]

[1]C. Auth, et. al., IEDM, 2017

Step 3: NC parameters extraction

HZO Experiment C-V [2]

[2]Sayeef's Group

Berkeley Device Modeling Center

Lg 18nm FinFET & NC-FinFET

At Lg=18nm, NC provide ~30% on-current boost

Step 4: NC-FinFETs Scaling

Simulation Results of Scaling

Theoretically, if we have uniform materials with that α and β , this is what we may expect to see.

1	"2018 IRDS" Node	"5"	"3"	"2.1"	"1.5"	"1.0 eq"	"0.7 eq"
2	Year of Production	2020	2022	2025	2028	2031	2034
3	Physical Gate Length (nm)	18	16	14	12		
4	Fin Width (nm)	7 6					
5	IRDS Target VDD (V)	0.70		0.65		0.60	0.55
6	lon Target (mA/μm)	0.85	0.91	0.82	0.92	0.83	0.76
7	lon of FinFET(mA/μm)	0.86	0.93	0.64	0.51	0.41	0.31
8	Ion of NC-FinFET(mA/µm)	1.11	1.17	0.97	0.92	0.75	0.60

Id-Vg

Berkeley Device Modeling Center

p. 10

Subthreshold Slope (SS)

- Sub 60mV/dec is not required
 Capacitance matching makes NC benefits more in strong inversion
 NC benefit more at smaller Lq
- 3. NC benefit more at smaller Lg
- 4. NC relieves SS degradation caused by Lg scaling

Drain Induced Barrier Lowering (DIBL)

Gm/Id & Gd/Id for analog performance

NC-FinFETs have higher Gm & lower Gd

NC achieves lower VDD

"2018 IRDS" Node	"5"	"3"	"2.1"	"1.5"	"1.0 eq"	"0.7 eq"
Year of Production	2020	2022	2025	2028	2031	2034
IRDS Target VDD (V)	0.	70	0	.65	0.60	0.55
FinFET VDD needed to meet IRDS Target Ion	0.70	0.69	Х	X	X	Х
NC – FinFET VDD needed to meet IRDS Target Ion	0.62	0.62	0.60	0.65	X	X

Compact Model Fitting, 16nm & 14nm

Lg=16nm

p. 15

Conclusion

 FinFETs and nano-sheet FETs scaling may be extended by using NC.

Part II NCFET Compact Model Enhancement

Improve the Convergence with better Initial Guess

Improve the convergence of NCFET Model

Convergence is improved by better initial guess in the inversion region.

Improve the convergence of NCFET Model

Qms per Iteration at TFE=2nm

Qms per Iteration at TFE=4nm

G TERM (DOMAIN ENERGY COEFFICIENT)

Motivation

$$E = 2\alpha P + 4\beta P^3 + 6\gamma P^5 - 2g\nabla^2 P + \rho \frac{dP}{dt}$$

- Negative DIBL and negative drain conductance that measurement data show [3] cannot be fitted without g term.
- G term was not included in current model (NCFETBDMC1)

[3] H. Zhou et. al., VLSI, 2018

NCFETs Compact Model

What is $\nabla^2 P$?

$$E = 2\alpha P + 4\beta P^3 + 6\gamma P^5 - 2g\nabla^2 P + \rho \frac{dP}{dt}$$

1. Consider 1-D:
$$\nabla^2 P = \frac{d^2 P}{dx^2}$$

2. $P \approx Q_g = Q_{inv} + Q_{dep} + Q_{fring}$
3. $\frac{d^2 P}{dx^2} \approx \frac{d^2 (Q_{inv} + Q_{fring})}{dx^2}$
4. Use Qinv & Qfring at g=0 in (3)

$$q_{\mathrm{I}nv} = -(B - A\xi)^{\frac{1}{n}}$$

Constants B and A can be evaluated using B.Cs 1. $At \ \xi = 0, q_{Inv} = q_{is}$ 2. $At \ \xi = 1, q_{Inv} = q_{idsat}$ $\Rightarrow B = (-q_{is})^n$ $\Rightarrow A = (-q_{is})^n - (-q_{idsat})^n$

$$\frac{d^2 q_{Inv}}{d\xi^2} = \frac{A^2(n-1)}{n^2} (B - Ax)^{\frac{1-2n}{n}}$$

Evaluate
$$\frac{d^2 Q_{Inv}}{dx^2}$$

$$\frac{d^2 q_{Inv}}{d\xi^2} = \frac{A^2 (n-1)}{n^2} (B - Ax)^{\frac{1-2n}{n}} \qquad \Rightarrow B = (-q_{Invs})^n \\ \Rightarrow A = (-q_{Invs})^n - (-q_{Invd})^n$$

At source side $\frac{d^2 q_{Invs}}{d\xi^2} \approx 0$, thus only consider Q_{Fring} in NCFET charge calculations. At drain side $\frac{d^2 q_{Invd}}{d\xi^2} \approx \frac{(n-1)[(-q_{Invs})^n - (-q_{Invd})^n]^2}{n^2} (-q_{Invd})^{1-2n}$ Since $-q_{Invs}$ is known, $\frac{d^2 q_{Invd}}{dx^2}$ can be included in the Newton's method calculation

$$Q_{Fringing} \equiv -C_{IFFE} \left\{ (V_{bi} - V_{SL}) \frac{\sinh\left[\frac{L_g - x}{\lambda}\right]}{\sinh\left[\frac{L_g}{\lambda}\right]} + (V_{bi} + V_{DS} - V_{SL}) \frac{\sinh\left[\frac{x}{\lambda}\right]}{\sinh\left[\frac{L_g}{\lambda}\right]} \right\}$$

$$\frac{d^2 Q_{Fringing}}{dx^2} \equiv -\frac{C_{IFFE}}{\lambda^2} \left\{ (V_{bi} - V_{SL}) \frac{\sinh\left[\frac{L_g - x}{\lambda}\right]}{\sinh\left[\frac{L_g}{\lambda}\right]} + (V_{bi} + V_{DS} - V_{SL}) \frac{\sinh\left[\frac{x}{\lambda}\right]}{\sinh\left[\frac{L_g}{\lambda}\right]} \right\}$$

Final VFE Equation

- $V_{FE} = t_{FE} \left[2\alpha P + 4\beta P^3 + 6\gamma P^5 2g \frac{d^2(Q_{inv} + Q_{fring})}{dx^2} + \rho \frac{dP}{dt} \right]$
- Where

$$-\frac{d^{2}Q_{Fring}}{dx^{2}} \equiv -\frac{Cox}{\lambda^{2}} \left\{ (V_{bi} - V_{SL}) \frac{\sinh\left[\frac{Lg - x}{\lambda}\right]}{\sinh\left[\frac{Lg}{\lambda}\right]} + (V_{bi} + V_{DS} - V_{SL}) \frac{\sinh\left[\frac{x}{\lambda}\right]}{\sinh\left[\frac{Lg}{\lambda}\right]} \right\}$$

• Where $x = l_{tob}$ at source; $x = L_{g} - l_{tob}$ at drain

$$-\frac{d^{2}q_{Invs}}{d\xi^{2}} \approx 0 \text{ at source side}$$

$$-\frac{d^{2}q_{Invd}}{d\xi^{2}} \approx \frac{(n-1)[(-q_{Invs})^{n} - (-q_{Invd})^{n}]^{2}}{n^{2}} (-q_{Invd})^{1-2n} \text{ at drain side}$$

TCAD Fitting Results – Small g (5E-5 *cm*³/*F*)

TCAD Fitting Results – Medium g (5E-4 *cm*³/*F*)

Small g (5E-5 *cm*³/*F*) vs Medium g (5E-4 *cm*³/*F*)

Less current especially in the off-state

Predictive Model up to g=1E-3 (*cm*³/*F*) TCAD Fitting Results

Used as fitting model: TCAD Fitting Results – Large g (5E-3 cm³/F)

Summery

- Convergence of the NCFET model is improved.
- G term has been implemented in BDMC NCFET Compact Model.
- Negative DIBL and Negative Drain Conductance are possibly to be achieve with the help of the g parameter.

g1	G parameter in Landau Equation
ng	Power of longitudinal variation of inversion charge
L_TOB	Source side distance to the top of the barrier

Thank you

Any Question?

